Predation in homogeneous and heterogeneous phage environments affects virulence determinants of Pseudomonas aeruginosa.
نویسندگان
چکیده
The rise of bacterial variants in the presence of lytic phages has been one of the basic grounds for evolution studies. However, there are incongruent results among different studies investigating the effect of phage resistance acquisition on bacterial fitness and virulence. We used experimental evolution to generate three classes of Pseudomonas aeruginosa variants under selective pressure from two different homogeneous phage environments and one heterogeneous phage environment. The fitness and virulence determinants of the variants, such as growth, motility, biofilm formation, resistance to oxidative stress, and the production of siderophores and chromophores, changed significantly compared to the control. Variants with similar colony morphology that were developed through different phage treatments have different phenotypic traits. Also, mRNA transcription for genes associated with certain phenotypic traits changed significantly; however, sequencing did not reveal any point mutations in selected gene loci. Furthermore, the appearance of small colony variants and melanogenic variants and the increase in pyocyanin and pyoverdin production for some variants are believed to affect the virulence of the population. The knowledge gained from this study will fundamentally contribute to our understanding of the evolutionary dynamics of bacteria under phage selective pressure which is crucial to the efficient utilization of bacteriophages in medical contexts.
منابع مشابه
Evolution of Pseudomonas aeruginosa virulence as a result of phage predation.
The rapid increase in the emergence of antibiotic-resistant bacteria has attracted attention to bacteriophages for treating and preventing bacterial infections. Bacteriophages can drive the diversification of Pseudomonas aeruginosa, giving rise to phage-resistant variants with different phenotypes from their ancestral hosts. In this study, we sought to investigate the effect of phage resistance...
متن کاملIdentification of virulence genes in Pseudomonas aeruginosa isolated from human and animal samples by multiplex-PCR and their antibiotic resistance pattern
Background: Pseudomonas aeruginosa is a leading cause of Hospital-acquired infection worldwide. A major problem in the treatment of bacterial infections is the emergence of strains with multiple resistances (MDR). The aim of this study was to identify virulence genes lasB, toxA, algD, exos in Pseudomonas aeruginosa isolates from human and animal by Multiplex-PCR method and determination of anti...
متن کاملAnaerobiosis of Pseudomonas aeruginosa: Implications for Treatments of Airway Infection
Pseudomonas aeruginosa, as an opportunistic pathogen, establishes a chronic infection in the respiratory track of patients suffering from pneumonia and bronchiectasis, including cystic fibrosis. Biofilm formation inside the oversecreted mucus layer lining the patient airway and production of virulence factors, a process controlled by quorum sensing, are considered to be the major virulence dete...
متن کاملComplete Genome Sequence of Pseudomonas aeruginosa Phage-Resistant Variant PA1RG
Bacteria have evolved several defense systems against phage predation. Here, we report the 6,500,439-bp complete genome sequence of the Pseudomonas aeruginosa phage-resistant variant PA1RG. Single-molecule real-time (SMRT) sequencing and de novo assembly revealed a single contig with 320-fold sequence coverage.
متن کاملProtist predation can favour cooperation within bacterial species
Here, we studied how protist predation affects cooperation in the opportunistic pathogen bacterium Pseudomonas aeruginosa, which uses quorum sensing (QS) cell-to-cell signalling to regulate the production of public goods. By competing wild-type bacteria with QS mutants (cheats), we show that a functioning QS system confers an elevated resistance to predation. Surprisingly, cheats were unable to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 79 9 شماره
صفحات -
تاریخ انتشار 2013